
Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

1

TABLE OF CONTENTS
1. Introduction ... 3

1.1 Data Science as a Service at Framed .. 3

1.2 Current Machine Learning Pipeline at Framed ... 3

1.3 Dissolving Feature Engineering through Deep Learning .. 5

1.4 General Project Aim ... 5

1.5 Objectives ... 6

1.5.1 Generate an Encompassing Data representation Architecture for deep learning

prediction ... 6

1.5.2 Implement an Appropriate Deep Learning Architecture For Churn Prediction 6

1.6 Report Overview ... 7

2. Background research and Related work .. 8

2.1 Churn Prediction Applications ... 8

2.1.1 Support vector machines ... 9

2.1.2 Decision Trees and Random ForestS ... 10

2.2 Unsupervised Feature Learning ... 13

2.3 Applications of Deep Learning in Churn Prediction ... 15

2.4 Diving Deeper into Deep Learning Mechanics .. 16

2.4.1 Supervised Learning ... 16

2.4.2 Types of Artificial Neurons .. 17

2.4.3 Deep Feed-Forward Neural Network (Multilayer Perceptron) 20

2.4.4 Tackling Overfitting in deep neural networks ... 25

2.5 Scaling the Generation of the Encompassing Data Representation Architecture 28

2.5.1 Apache Spark cluster Computing Engine ... 28

2.5.2 Hadoop Distributed File System .. 31

3. Methodology ... 33

3.1 Encompassing Data Representation Architecture .. 33

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

2

3.2 Scaling Dataset Generation with Spark ... 38

3.3 Implementing an Appropriate Deep Learning Architecture ... 44

4. Evaluation & Analysis ... 50

4.1 Evaluating the Effectiveness of Introduced Techniques ... 51

4.1.1 Company 1 .. 51

4.1.2 Company 2 .. 53

4.1.3 Company 3 .. 54

4.2 Evaluating the Effect of Adding More Layers .. 56

4.2.1 Company 1 .. 57

4.2.2 Company 2 .. 58

4.2.3 Company 3 .. 59

4.3 Evaluating the Overall Performance against Frameds’ Model ... 60

4.4 Examining the reason behind Company 2’s poor performance .. 62

5. Discussion .. 65

6. Conclusion ... 67

References .. 69

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

3

1. INTRODUCTION

1.1 Data Science as a Service at Framed

Various markets across the world are becoming increasingly more saturated, with more

and more customers swapping their registered services between competing companies.

Thus companies have realized that they should focus their marketing efforts in customer

retention rather than customer acquisition. In fact, studies have shown that the funds a

company spends in attempting to gain new customers is far greater than the funds it would

spend if it were to attempt to retain its customers [1]. Customer retention strategies can be

targeted on high-risk customers that are intending to discontinue their custom or move

their custom to another service competitor. This effect of customer loss is better known as

customer churn. Thus accurate and early identification of these customers is critical in

minimizing the cost of a company’s overall retention marketing strategy.

Through the use of machine learning, Framed are able to identify high-risk customers

before they churn. This churn assessment is performed monthly for a specific company so

that the company can subsequently apply a targeted marketing strategy in order to retain

these customers. This high-risk customer identification methodology is sold as a service to

various companies that are interested in forming more advanced customer retention

strategies.

1.2 Current Machine Learning Pipeline at Framed

At the moment, Framed are using a very modern and advanced classification machine

learning algorithm knows as the Random Forest algorithm. This is an ensemble classifier

and thus has the distinct advantage of not over-fitting its generated model parameters due

the Law of Large Numbers [2]. Like most conventional machine learning algorithms,

Random Forests’ performance in predicting is highly dependent on the features that it is

given. Without the capability of engineering its own features to be able to better capture

variance present in the data (which would ultimately increase prediction accuracies), a lot

of time is spent by Framed in generating secondary features that can do just that. This

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

4

derivation and generation of meaningful secondary features becomes a struggle when this

needs to happen for each and every company Framed provides its service to. This is

because each company has its own unique features that exhibit their own variances and

dependencies. Figure 1.1 shows a very basic overview of the operations that take place

within Framed’s machine learning pipeline.

Studies have shown that the performance of almost all machine learning algorithms are

severely affected by the representation that is used to describe the data they are processing

(features) [3] [4]. This is because different features can get entangled with other features

and thus would hide some explanatory factors that would describe some of the variation

within the data inputs. This phenomenon is also known as the curse of dimensionality [5].

For that reason most of the effort when designing machine learning systems goes into the

feature engineering phase, where machine learning practitioners need to generate new

features from the data that would allow the machine learning algorithms to produce

adequate results [3]. Thus companies like Framed will spend a lot of time and effort in

feature engineering in order to optimize their machine learning classifiers for a specific

problem. This is especially important when dealing with high-dimensional data.

Furthermore, most human generated features usually end up being sub-optimal as most of

the time they are either over-specified or incomplete [6].

Random Forest

Machine Learning

Algorithm

Company

Data
Feature

Engineering

Dataset

Pre-Processing

Prediction

Results

Figure 1.1 - Machine Learning Pipeline at Framed

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

5

1.3 Dissolving Feature Engineering through Deep Learning

Advances in the field of Neural Networks and recent increases in computing performance,

have allowed for the development of large scale neural networks with more than a single

hidden layer. This allowed deep neural networks to propagate the weights of each of their

layers to the next. The effects of this ability was that the networks were able to decompose

the complexities within the given data by generating abstract data features in an

unsupervised manner in each of their hidden layers [4] [7]. This gave new life to predictive

modelling on high-dimensional datasets with very noisy data (image recognition, automatic

speech recognition etc.) as the unsupervised abstract features were able to capture the

most important variances within the data and thus ignore any variance that did not affect

the result variable [8] [9] [10].

This inherent ability have made Deep Neural Networks (DNN’s) excellent tools in pattern

recognition. Since churn prediction is the analysis of user behavioural patterns, the

application of DNN’s in this domain could definitely be beneficial not only in terms of

prediction accuracies but also in eliminating manual feature engineering as a required step.

1.4 General Project Aim

From the presented limitations of human feature engineering in conventional machine

learning algorithms which are currently employed at Framed, the project will seek to

investigate and apply a deep learning architecture in Frameds’ machine learning pipeline.

The deep architecture would allow for unsupervised feature learning which in practice

should allow the company to bypass the feature engineering step for any company data

they receive. Ideally the deep architecture should also increase the company’s prediction

accuracy.

Most machine learning implementations are performed and tuned on specific company

data based on the company’s business model. Thus input vectors and output labels are pre-

processed based on these factors and therefore the representations generated are very task

specific. In order to be able to apply a deep learning architecture for any kind of data

Framed deals with, the representations need to be abstracted and simplified while also

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

6

capturing user behavioural patterns. The research conducted will give insight to how well

the inherent unsupervised feature engineering ability of DNN’s performs across companies

when presented with abstract user behavioural input vectors.

1.5 Objectives

The general project aim can be broken down into objectives. The objectives describe the

aim of the project in further detail and the collective completion of these objectives should

provide reference as to how successfully the projects aim has been satisfied during

evaluation.

1.5.1 GENERATE AN ENCOMPASSING DATA REPRESENTATION ARCHITECTURE
FOR DEEP LEARNING PREDICTION

One of the core issues with applying deep learning architectures in any problem scenario is

to generate a specialized data representation architecture. This data representation

architecture should structure the data in such a way as to reduce dimensionality while

upholding a high-resolution representation of the underlying data features. Due to the fact

that features change according to the problem scenario (i.e. features change according to

the service a company carries out), an encompassing data representation architecture

needs to be developed that can be applied across different companies regardless of the data

features each company uses. Creating a generic data representation to encompass different

company features is quite novel and its success could be quantified by how well the deep

learning architecture performs across companies.

1.5.2 IMPLEMENT AN APPROPRIATE DEEP LEARNING ARCHITECTURE FOR CHURN
PREDICTION

The deep learning architecture implemented should be able to employ the unsupervised

feature learning ability of deep neural networks. This is critical as this would ensure that

the general aim of the project, of avoiding human feature engineering, is satisfied.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

7

Furthermore the deep architecture should employ techniques to generalize well across

different months, without a lot of variance in prediction accuracy across months. Ideally

the deep learning architecture should perform better in terms of prediction accuracy

against the currently employed machine learning algorithm at Framed for the specific

companies that will be investigated. This is not a requirement as the general aim of this

research is to avoid manual feature engineering but it will definitely be a positive result if

this is achieved.

1.6 Report Overview

The remainder of the report is structured as follows. In Section 2, an overview of churn

prediction and its applications are presented as well as an in depth overview of the

research that was conducted in understanding deep learning and the Spark computational

cluster. The Methodology that was followed to develop the proposed data representation

algorithm and the deep learning architecture are presented in Section 3. Section 4 covers

the steps taken in evaluating and analysing the prediction results of the proposed deep

learning architecture. The prediction results are discussed in Section 5 and in Section 6 we

draw our conclusions.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

8

2. BACKGROUND RESEARCH AND RELATED WORK

2.1 Churn Prediction Applications

Companies are becoming increasingly more aware of the fact that retaining existing

customers is the best marketing strategy to follow in order survive in industry [11]. In

order to be able to apply these marketing strategies, customers that are likely to move their

custom to a competitor need to be identified. The effect of customer abandoning their

custom with a service provider is better known as churn. Applying retention strategies

becomes even more important in the case of mature businesses whose customer base has

reached its peak and thus retaining customers is of upmost importance.

The reasons behind why customers might want to discontinue their custom with a

company can vary. This can be divided into two types of churn: incidental and deliberate

churn [12]. Sometimes customers are forced into dropping their service with a company

due to life circumstances. This is known as incidental churn. Some examples include

customer relocation to areas where the company does not provide service to, or even

changes in a customer’s financial status such that he/she can no longer afford to stay with a

company. Deliberate churn describes the effect of a customer churning due to the customer

deciding to move their custom to a competitor. Reasons behind this can range from a

competitor offering a latest product, a competitor having better prices for the same service

or even the customer’s bad experience with technical support (call centres).

From the reasons presented above it becomes clear that it is of great importance for a

company to understand its customers in order for it to evolve its business strategy. Thus

identifying customers who are about to churn becomes not just important in terms of

retaining customers but also in terms of gathering business intelligence. As a response in

tackling this problem companies have turned to predictive modelling techniques to assist

in the identification of these customers. Numerous different machine learning techniques

have been applied for churn prediction in the past decade. This section will cover some of

these techniques and how well they performed when applied in the context of churn

prediction.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

9

2.1.1 SUPPORT VECTOR MACHINES

Support vector machines were first introduced by Vapnik during 1995 which were

included in his studies in statistical learning theory. The main concept of SVM is to take

known labelled data observations and map them in a linear feature space where the

separation between the classes is maximized. This is done through an optimization

algorithm which aims to maximize the separation margin between the classes [13].

Furthermore with the introduction of slack variables (usually denoted as C) in the

optimization function, a “hard” or a “soft” margin can be achieved between classes (see

Figure 2.1). A “hard” margin will have a lower separation between the classes but will tend

to misclassify less than a “soft” margin, which will be lenient towards misclassification but

will allow for a larger separation between classes. In real world situations employing a

“soft” margin might be preferable as not to overfit the model.

Figure 2.1 - Varying C to generate "hard" and "soft" margins between classes

In practice however the data is not linearly separable. A way around this is to perform non-

linear mapping of the input feature space into a high-dimensional feature space using of

what is now popularly known as the “kernel trick” [14]. This allows the support vector

machine algorithm to generalize across different non-linearly separable data depending on

the kernel function used.

The most recent application of Support Vector Machines in the context of churn prediction

was identified to be used to predict churn in subscription services [15]. The paper noted

that the use of SVM’s was not well documented in published research and that previous

implementations were based on unrealistic data with small sample sizes without much

noise in their samples. Motivated by these reasons, SVM was applied to real data which was

gathered from a subscription oriented Belgian newspaper, and its performance was

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

10

compared to Logistic Regression and Random Forests techniques. Furthermore the paper

noted that using SVMs has distinct advantages.

 Support Vector Machines only require two parameters to be chosen in order for

them to generate predictions. The kernel parameter and slack variable ‘C’.

 The model generated by SVMs is always optimal and global. This is extremely

advantageous as other methods might fall into local minima during their parameter

optimization.

The results of the approach presented, showed that SVMs perform very well in the

application of churn prediction even on realistic, noisy datasets. The applied SVM was able

to beat Logistic Regression but under performed when compared to Random Forests.

Furthermore the paper notes that the performance of an SVM is greatly dependent on the

parameters (kernel function and ‘C’) that it is given and in turn the parameters are

depended on the data features. It was also noted that SVMs take significantly more time to

train than Logistic Regression and Random Forests. This is definitely the biggest drawback

of SVMs, as companies usually deal with very large, high-dimensional datasets. Even

though the work done in the paper was a based on real data, SVM’s could prove to be

unscalable in the world of big data.

2.1.2 DECISION TREES AND RANDOM FORESTS

Decision tress have been used extensively in the context of churn prediction throughout

the years. A decision tree can be thought of as a tree structure representation of a given

classification or regression problem. It is composed of nodes which are also known as ‘non-

leafs’ that represent explanatory variables. Subsequently a set of decisions to be made are

‘grown’ from these nodes, based on a subset of values of the explanatory variable the node

depicts. This is repeated until the hierarchical representation generated has all of its end

nodes linked to a value from the target variable [16]. This is more easily understood in

Figure 2.2 from [17] which illustrates a decision tree grown from explanatory variables

‘Outlook’, ‘Humidity’ and ‘Wind’ in order to predict the categorical target variable ‘Play?’.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

11

Figure 2.2 - Example of a Decision Tree

A lot of algorithms have been developed in the last decade in order to build efficient and

effective decision trees for machine learning applications (CART, C5.0 etc.) [18]. However

single decision trees have proved to underperform when compared to other methods.

Furthermore decision trees have a tendency to focus their growing on the majority class

when presented with imbalanced datasets. Thus ensemble methods (usually bagging) were

developed in order to address the poor performance of decision trees. This is performed

by generating a lot of different decision trees that are able to work as a single classifier

through majority voting on their predictions. One of the most popular ensemble classifier

for decision trees is known as the Random Forests algorithm.

This is an ensemble classifier and thus has the distinct advantage of not over-fitting its

generated models due to the Law of Large Numbers. The algorithm works by splitting the

dataset into random subsets of samples and subsequently generating decision trees on

each subset. During the prediction phase each tree is allowed to report its predictions and

the majority prediction is the one returned by the model [2]. By applying the right amount

of randomness in their configurations, Random Forests can become extremely accurate

classifiers. Furthermore due to their inherent process of creating multiple decision trees

during the model generation, the algorithm is perfectly suited for being deployed in

distributed systems (each node can build a distinct tree) which can dramatically decrease

computation time in training and validation [19]. Even though the effect of bagging allows

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

12

the Random Forest algorithm to avoid overfitting, they still do not perform as well on

datasets where there is extreme class imbalance; for example churn prediction datasets.

This inherent flaw is what motivated the development of Improved Balanced Random

Forests [20]. The proposed algorithm combined two previous attempts on tackling this

issue, Balanced Forests and Weighted Forests. Balanced Forests work by sub sampling a

dataset while balancing the samples in terms of class distribution for each tree. This is

repeated until all trees generated have covered the majority class. Weighted random

forests assign weights to each class, such that the weight of the majority class has a lower

weight than the minority class in order to penalize on misclassification accordingly.

The paper states that both these previous attempts have their limitations and continues by

saying that the two previous attempts can be combined in order to make an extremely

efficient and accurate classifier. The proposed algorithm was evaluated on real-world

banking data provided by a Chinese bank and feature selection was done in order to select

optimal features for the model. In order to compare the proposed algorithms’ performance,

training and testing were performed on Artificial Neural Networks, Decision Trees, SVMs,

and on both Balanced Forests and Weighted Forests. Results showed that the proposed

algorithm outperformed both previous attempts as well as the other traditional

approaches.

From the results it is easy for one to conclude that the Improved Balanced Random Forests

is the state-of-the-art algorithm for churn prediction. In terms of predictive performance

they outclass other methods, but also due to their effective scalability, fast training and fast

predictive speeds they offer great potential in the problem of churn prediction. Having that

said, their performance is dependent on the features selected, and therefore the feature

engineering stage cannot be avoided when using this algorithm.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

13

2.2 Unsupervised Feature Learning

It is argued that the only way to allow a machine to understand the world around it (AI) is

by first being able to untangle hidden features from the data without needing a human to

intervene. In order to address the issues that occur due to the effects of high-

dimensionality, an unsupervised representation algorithm is required. The algorithm

should be able to decompose complexities within datasets and consequently generate new,

more effective features. This is what motivated the development of deep learning

algorithms [4] [7].

The key findings that propelled the ingenuity behind the deep learning algorithms was the

proposal of how the human brain lets visual information flow through a hierarchical neural

network in its visual cortex in order to learn what is being observed by the patterns the

information exhibits [5] [7]. Thus assuming that an algorithm could mimic this process,

even at a very crude level, the algorithm could be applied over large datasets and

consequently at every step of the hierarchy produce abstracted data features without the

need for human supervision.

Since the introduction of deep learning algorithms, a number of different models have been

created that have been able to simulate the effect that occurs in the human visual cortex

using artificial neural networks. These models can be further generalized into three

different types of deep architectures that have different types of applications [21]:

 Generative deep architectures – used to describe the higher-level correlation

properties of the observed data for pattern analysis, and consequently describe the

joint statistical distributions of the observed data with their associated classes.

 Discriminative deep architectures – used to directly classify patterns by

describing previous distributions of classes given by the observed data.

 Hybrid deep architectures – used for when the goal is to classify but is supported

by the outcomes of a generative architecture. Usually these architectures have the

highest prediction accuracy.

Most of these architectures are variants of other models and some are simply combinations

of models especially in the case of hybrid architectures [21]. The main concept is that they

have some sort of hierarchy that is able to take inputs at the networks input layer and at

every level in their hidden layer, create more abstract data features. This is done by having

less artificial neurons at each step up the hierarchy [7]. Thus at the output layer of the

network, extremely high level abstractions of the data are produced which are constructed

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

14

by a high-resolution of previous data features. In the case of discriminative deep

architectures better predictions can be made on classes based off these high level

abstractions rather than the direct input features.

Figure 2.3 - Deep Learning Architecture Google used to allow their system to learn concepts it found interesting
after going through 10 million unlabelled images from YouTube videos. The constructed concept stimuli of a

person and a cat are shown as well.

The architecture shown in Figure 2.3, was the architecture employed by Google as part of

their research in understanding human intelligence [8]. This a great example that

demonstrates the incredible power of unsupervised feature learning. The architecture is

completely unsupervised and thus any high-level abstractions discovered by the deep

neural network will be what it thought was important to abstract. After feeding the system

with 10 million unlabelled images gathered from YouTube videos the system was able to

recognize high-level abstractions (stimuli) that could detect people and more interestingly

cats. What is extremely interesting here is that the system was not taught to recognize

these concepts but rather identified them on its own.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

15

2.3 Applications of Deep Learning in Churn Prediction

Deep learning architectures have been successfully applied in various pattern recognition

scenarios: image recognition, natural language processing and signal processing (mostly

audio) [8] [9] [10]. Thus there should be no reason why deep learning could not be applied

in churn prediction as it is simply the analysis of user behavioural patterns. Having that

said, there are not a lot of scientific papers looking into the application of deep learning in

churn prediction. In fact research was only able to identify one published paper describing

this scenario, which discussed the application of deep learning in customer churn

prediction regarding a mobile telecommunication network [6].

The paper proposes a discriminative deep architecture using a four-layer feedforward

neural network which acts as binary classifier which distinguishes churners and non-

churners according to a users’ call patterns. The main motivation behind the use of deep

learning architectures was to investigate the possibility of avoiding the time consuming

feature engineering step in the company’s pipeline while at the same time beating their

previous predicting performance.

Due to the high underlying complexities of user call interactions they needed to introduce a

data representation architecture that could efficiently describe user behaviour across

multiple layers while keeping the representation as detailed as possible. This was essential

as deep architectures require a high-resolution input so that they can successfully unravel

the underlying interactions and generate secondary features that can increase the

separation between classes.

This data representation was used to train and test the deep feed-forward network with a

sigmoid activation function in its hidden layers. Results have shown that the model is stable

across most of the months which suggests that the model generalizes well and does not

overfit the data. Furthermore the company was able to significantly increase their

prediction accuracy from 73.2% to 77.9% AUC. Therefore it can be concluded that multi-

layer feed forward models are effective in churn prediction.

The paper also noted that there are some possible enhancements and further research that

can be attempted to further improve the models accuracy. Location data of calls could be

included in the generation of their data representation architecture. Furthermore the paper

hinted that Deep Belief Networks (generative architecture) could be applied as a pre-

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

16

training step which could also increase performance of their multi-layer feedforward

network.

The papers’ overall goal of using a deep learning architecture to avoid the feature

engineering stage is very close to the goal of this project. However, the developed data

representation is very domain specific (telecommunications industry) and moreover, it

does not completely avoid feature engineering (a few features were engineered to compose

the final segment of the data representation). Even though the papers’ secondary goal of

beating the previous prediction accuracy was achieved, it did not prove that the feature

engineering step could be avoided completely. Furthermore the data representation

proposed cannot be applied to any company other than a telecommunications company.

2.4 Diving Deeper into Deep Learning Mechanics

This section covers in depth information regarding the inner mechanics of deep neural

networks. It will provide context as to how deep architectures are able to learn, as well as

the techniques that were used for implementing the final architecture proposed.

2.4.1 SUPERVISED LEARNING

In the case of supervised learning on a specific training set 𝑍, the goal is find a hypothesis

function 𝑓ℎ that approximates the function 𝑓∗: 𝑋 → 𝑌, where 𝑋 is the feature set in 𝑍, 𝑌 is

the output label (target feature) in 𝑍 and 𝑍 is of the form {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} ∈ (𝑋, 𝑌)𝑛

[22]. As all instances of 𝑌 are known for all instances of 𝑋 it can be said that 𝑍 is of the

form{(𝑥1, 𝑓∗(𝑥1)), … , (𝑥𝑛, 𝑓∗(𝑥𝑛)) }. Through the use of an appropriate cost function 𝐽, all

the points of 𝑍 can be used to find the parameters that fit 𝑓ℎ. Thus supervised learning

consists of finding the minimum of the arguments of the cost function 𝐽 on training set 𝑍:

𝑓ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽(𝑍)

It has to be noted that simply finding the approximation to the function which fits the

training set is not enough for true supervised learning. The approximation computed needs

to generalize well not to just the samples in the training set but also to new samples. Thus

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

17

for optimized supervised learning, the function should be tested on subsequent validation

and test sets in order to quantify its efficacy (how well it generalizes).

2.4.2 TYPES OF ARTIFICIAL NEURONS

As mentioned previously the motivation behind the development of deep learning

architectures was the hierarchical neural network in the human visual cortex [5] [7]. In

order to simulate this, artificial neurons were used to form this hierarchy for

computational simulations. Artificial neurons are simply computational units that take an

arbitrary number of inputs (including a bias input) and through a specific activation

function are able to return a single output. This is can be understood easier through the

example shown in Figure 2.4.

Figure 2.4 - Example of a single artificial neuron

As shown in the figure above, an artificial neuron takes inputs 𝑥1, 𝑥2, 𝑥3 and a bias term 𝑏.

In fact this is the simplest form of a neural network, which in this example allows for the

representation of a hypothesis ℎ𝑊,𝑏(𝑥) = 𝑊1𝑥1 + 𝑊2𝑥2 + 𝑊3𝑥3 + 𝑊0𝑏. This can be

generalized through an activation function 𝑓𝑎: ℜ → ℜ such that 𝑓𝑎(𝑊𝑇𝑥) =

𝑓𝑎(∑ 𝑊𝑖𝑥𝑖 + 𝑏)3
𝑖=1 = 𝑓𝑎(𝑧) [23]. There are mainly two types of activation functions that are

used in neural networks, a sigmoid function (logistic or hyperbolic tangent) or the more

recently developed rectified linear function.

𝑥1

𝑥2

𝑥3

𝑏

𝑓𝑎(𝑊𝑇𝑥)

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

18

2.4.2.1 Logistic/Hyperbolic Tangent Sigmoid Neuron

𝑓(𝑧) =
1

1 + exp (−𝑧)
, 𝑤ℎ𝑒𝑟𝑒 𝑧 = ∑ 𝑊𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝑏

The use of sigmoid functions in deep neural networks stems from the fact that they

introduce non-linearity to the model [24]. The logistic sigmoid neuron generates a linear

combination of its input values and weights (pre-activation 𝑧) and applies the logistic

regression function to the result. Thus the output of the neuron is bounded between 0 and

1. Intuitively the larger the value of the neurons pre-activation function, the closer the

output will be to 1 (sigmoid in Figure 2.5 from [23]). Furthermore due to its easily

calculated derivative
𝑑

𝑑𝑥
𝑓(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)), it allows the possibility for a network

composed of these neurons, to be trained using greedy optimization learning algorithms

like gradient descent.

Figure 2.5 - Comparison of sigmoid, hyperbolic tangent and rectified linear activation functions

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

19

Instead of the logistic function, a hyperbolic tangent (tanh) activation function can be used

which can be seen in Figure 2.5.

𝑓(𝑧) = tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
, 𝑤ℎ𝑒𝑟𝑒 𝑧 = ∑ 𝑊𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝑏

This is simply a rescaled logistic activation function with its lower limit set to -1. Studies

have shown that when presented with normalized data (between 0 and 1), hyperbolic

tangent activation functions seem to generate stronger gradients during backpropagation

(data is cantered on 0 thus derivatives are larger) [25].

2.4.2.2 Rectified Linear Neuron

𝑓(𝑧) = max(0, 𝑧) , 𝑤ℎ𝑒𝑟𝑒 𝑧 = ∑ 𝑊𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝑏

As shown in Figure 2.5, the rectified linear activation function has no upper limit above 0

and any negative pre-activation value computed will be set to 0. The effects of this is that a

rectified linear function can only have two possible derivatives and thus the output values

can only be 0 or 𝑊𝑖 [26]. This makes rectified linear neurons extremely computationally

efficient. Moreover the general effect of employing rectified linear neurons in a network, is

the fact that they allow the network to form sparse propagation paths as neuros will either

be active or not and thus computations become linear along these paths (Figure 2.6 from

[26]). Due to this linearity, gradients do not “vanish” during backpropagation as can be

noticed in sigmoid or tanh activation functions.

Figure 2.6 - Sparse propagation of activations and gradients in a network of rectified linear neurons

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

20

2.4.3 DEEP FEED-FORWARD NEURAL NETWORK (MULTILAYER PERCEPTRON)

In theory stacking artificial neurons in various different combinations can allow such

computational units to solve ever more complicated functions. More formally any function

can be represented by a set of computational units configured in certain way [7]. The

configuration and connections between elements can be represented by a graph. For

example the expression of the function 𝑓(𝑥) = 𝑥 ∗ sin (𝑎 ∗ 𝑥 + 𝑏) can be considered as the

composition of a set of operations which is illustrated in Figure 2.7 from [7].

Figure 2.7 - Graph of a function computing f(x) = x * sin(a * x + b)

Through this intuitive example one can recognize that a complex function, such as 𝑓(𝑥)

cannot be expressed through a single computational unit of a specific type. This is similar to

how complex non-linear functions can be approximated by stacking artificial neurons and

by subsequently training each neurons weights.

A feed-forward neural network or MLP is made up of an arrangement of interconnected

neurons with a simple activation function. The arrangement of an MLP can be seen in

Figure 2.8 (from [27]) and simulates the non-linear mapping of an input vector to an

output value. It does this by connecting the input and output layers through an arbitrary

number of interconnected hidden layers. MLPs are fully connected (each node is connected

to every node in the next layer of nodes) and each connection between two neurons has an

assigned weight.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

21

Figure 2.8 - Graph of a Multilayer Perceptron

Initially an MLP has no inherent ability to solve a highly complex non-linear function as its

weights are initialized randomly upon instantiation [27]. Thus by allowing each layer of

neurons to propagate their activations to forward layers (feed-forward architecture) and

iteratively ‘fix’ their weights during backpropagation, the composition of weights of the

architecture will begin to give increasingly better approximations to any function in every

iteration.

Furthermore, after successful training, each neuron in the network can be thought of as a

feature detector [7]. Thus by allowing information to flow forward between hidden layers,

more complex, abstracted features will be generated within the network. This is because

top level hidden layer neurons assign their weights based on the activations of previous

hidden layers, which in theory are a combination of complex feature detections.

In the case of classification, a softmax function can be used as the activation function in

each artificial neuron located in the output layer. This is a generalization of logistic

regression so that multiple classes can be predicted by having a neuron for each class that

exists (can also be used for binary classification by having 2 neurons) [23].

𝑃(𝑦(𝑖) = 𝑘|𝑥(𝑖); 𝑊; 𝑏) =
exp(𝑊(𝑘)𝑇𝑥(𝑖) + 𝑏(𝑘))

∑ exp (𝑊(𝑗)𝑇𝑘
𝑗=1 𝑥(𝑖) + 𝑏(𝑗))

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

22

Each neuron in the softmax layer will make a prediction 𝑦(𝑖) based on its inputs 𝑥(𝑖), its

weights 𝑊 and its bias value 𝑏. The softmax layer differs from other layers in an MLP as its

neurons work collectively to put into effect ∑ 𝑦(𝑖) = 1𝑘
𝑖=1 . In other words each neuron will

return a probability as to how likely the propagated inputs belong to its class, such that all

the probabilities returned sum up to 1. Thus the predicted class can be found by the

position of the neuron in the output layer which returned the highest probability.

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃(𝑦(𝑖) = 𝑘|𝑥(𝑖); 𝑊; 𝑏))

Consequently the final prediction may not be equal to the actual value of the target

variable. The difference between the output predictions and the actual outputs can be

quantified as an error signal, or otherwise the cost [27]. The magnitude of the cost is what

determines how the weights will be adjusted during backpropagation. The regularized cost

function 𝐽(𝑊) for an MLP demonstrating classification through softmax is given by the

following function [23].

𝐽(𝑊) = −
1

𝑚
[∑ ∑ 1{𝑦(𝑖) = 𝑗} log

𝑒𝑊𝑗
𝑇𝑥(𝑖)

∑ 𝑒𝑊𝑙
𝑇𝑥(𝑖)𝑘

𝑙=1

𝑘

𝑗=1

𝑚

𝑖=1

] +
𝜆

2
∑ ∑ 𝑊𝑖,𝑗

2

𝑛

𝑗=0

𝑘

𝑖=1

This is equivalent to the negative log likelihood with an added “weight decay”

regularization technique which essentially limits overfitting of the weight parameters (L2

regularization). From the above function we can see that due to the indicator

function 1{𝑦(𝑖) = 𝑗}, only the activation of the neuron at position 𝑗 will contribute to the

cost. Intuitively by looking at the plot of −log(𝑥) in Figure 2.9, one can recognize that as the

activation of a particular neuron gets closer to 0, the cost increases exponentially. Thus by

forcing the model to minimize this error would essentially force the weights of the network

to promote an activation close to 1 for that particular neuron.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

23

Figure 2.9 - Graph of negative log(x)

By varying the weights across all possible values and passing it through the cost function,

an error surface could be generated [27]. It is difficult to visualize this for all the weights as

a plot of all the weights in a normal MLP would most likely exceed three dimensions. In

order to give context to gradient descent and backpropagation, an error surface

visualization for an MLP with only two weights is shown in Figure 2.10 (from [27]).

Figure 2.10 - Error surface generated through cost function between two weights

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

24

The error surface depicted from the two weights shows how the error changes with

respect to the values of the weights. Essentially the absolute goal of a backpropagation

algorithm is to locate the global minimum of the errors surface. It is able to do this through

a technique known as gradient descent.

As mentioned previously the weights of an MLP are instantiated randomly which

technically means that that a random point in the errors surface is selected. In order for it

to decide on how to alter the values of the two weights, the gradient of that locally selected

point is calculated. This is done by differentiating the cost function with respect to each

weight. By taking derivatives it can be shown that the gradient can be calculated using the

following function [23].

∇𝑊𝑗
 𝐽(𝑊) = −

1

𝑚
∑ [𝑥(𝑖) (1{𝑦(𝑖) = 𝑗} − 𝑝(𝑦(𝑖) = 𝑗|𝑥(𝑖); 𝑊))] + 𝜆𝑊𝑗

𝑚

𝑖=1

Thus by using the resultant partial derivative vector ∇𝑊𝑗
 𝐽(𝑊), the weights can be updated

according to their partial derivative and a constant 𝛼, which is more formally known as the

learning rate.

𝑊𝑗 ≔ 𝑊𝑗 − 𝛼∇𝑊𝑗
 𝐽(𝑊)

The whole process is repeated and the weights are updated iteratively until the

backpropagation algorithm is satisfied that it has reached the global minimum of the error

surface. Of course almost all backpropagation algorithms that use gradient descent in order

to optimize a networks weights, cannot be certain that they have reached a global

minimum [27]. As can be seen in Figure 2.10, the error surface is composed of multiple

local minima and thus a simple backpropagation algorithm could get stuck in a suboptimal

local minimum. This is where the learning rate plays a big role in assisting the

backpropagation algorithm to determine if it has reached a reasonable error minimum.

The learning rate can be thought of as the ‘step-size’ the algorithm takes as it goes down an

error slope. A very large learning rate will cause the backpropagation algorithm to

repetitively miss a global minimum due to the erratic weight changes. Similarly if the

learning rate is too small, backpropagation will be very slow and may never reach the best

local minimum, as it might get caught in a different local minimum. To address this issue

the momentum parameter can be introduced in the backpropagation algorithm which can

help “push” the descent over local suboptimal minima [28]. It does this by incorporating a

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

25

proportion of the previous weight update in the current weight update. Thus the weight

update would happen as follows:

𝑊𝑗 ≔ 𝑊𝑗 − 𝛼∇𝑊𝑗
 𝐽(𝑊) + 𝑝∆𝑊𝑗−1

The backpropagation algorithm described above is known as the batch backpropagation

algorithm as for every iteration in its process, all training samples are used to generate the

gradients, which in turn update the weights [23]. Studies have shown that in order to get

more accurate weight updates, the gradients are computed over “mini-batches” (subsets)

of the complete training set [7]. Subsequently the average of these gradients is taken to be

the final update to be performed on the weights. This is more formally known as Stochastic

Gradient descent or as mini-batch gradient descent.

2.4.4 TACKLING OVERFITTING IN DEEP NEURAL NETWORKS

In supervised learning applications of deep neural networks, as in the architecture

discussed above, optimal predictive performance is not a measure of how well the

architecture can fit the given output values (training set). Success in any supervised

learning application is quantified as to how well the model performs on data it has not been

trained on. Due to the fact that deep learning architectures generate more complex,

abstract features (usually higher order features) in each hidden layer, they tend to overfit

the training data. This can be demonstrated through the following example of a linear

model versus a high order polynomial model in Figure 2.11 from [29].

Figure 2.11 - Comparison of linear model vs high order polynomial model: (Left) Training Data, (Right) Training
Data with Test Data

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

26

As can be seen in Figure 2.11, a linear and a polynomial model were fit on the initial

training data (left plot). One could come to the conclusion that the polynomial model fits

the data perfectly and thus is the “better” model. However, when presented with additional

data from a test set (right plot), the polynomial model performs significantly worse than

the linear model which in fact was the best suited model or in other words was the model

that best generalized the variances within the data.

In order to address this intrinsic issue of deep learning architectures, regularization

parameters are introduced within a cost function so that large computed weights are

penalized. The most recognized regularization parameters that are commonly used in deep

neural networks are the L1 regularization and the L2 regularization [30].

𝐿1 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝜆 ∑ |𝑊𝑖|

𝑘

𝑖=1

L1 regularization is basically the sum of the weights multiplied by an L1 constant 𝜆. This

type of regularization has the interesting effect of making the weight vector very sparse. In

other words most of the weights will be close to zero with only a few large weights. This is

important as it forces neurons to compute their activations on the most important inputs,

making them more resistant to noise.

𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:
𝜆

2
∑ 𝑊𝑖

2

𝑘

𝑖=1

L2 regularization or “weight decay” is the sum of the square of the weights multiplied by

half the L2 constant 𝜆. The regularizer has the intuitive effect of forcing the cost function to

penalize high variance weight vectors, thus forcing the selection of weight vectors with less

variance in their weight values. By doing this, the network is forced to use all of its inputs,

rather than using specific inputs over and over.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

27

Additionally to these regularization techniques, an early stopping mechanic can be

implemented within a backpropagation algorithm. This mechanic controls the overall run

time of the algorithm. In order to be able to apply it, the data needs to be split into training,

validation and test data. Its main purpose is to allow training to continue on the training

data as long as the validation error decreases [31]. This ensures that the architecture does

not begin to overfit the training data. Furthermore this allows the training time to be

optimal where further training would not produce any significant increase in prediction

accuracy.

Another very recent technique for preventing overfitting is Dropout [32]. The technique

works by randomly dropping (turning off) a proportion of neurons from a specific layer in

every training iteration. It does this by giving each neuron in a layer a probability 𝑝 that it

will be active. The effect of Dropout in one training iteration can be seen in Figure 2.12

from [32].

Figure 2.12 - Effect of Dropout: (left) fully connected Feed Forward Architecture, (right) Ap plication of Dropout
during one training iteration

As can be seen in Figure 2.12, applying Dropout during training has the effect of running

training on a subsample of the actual network. This is because any neural networks of 𝑛

artificial neurons can be seen as a group of 2𝑛 possible subsamples. Thus throughout the

whole training process of a network with dropout, can be thought of as the training of 2𝑛

subsamples. At test time the average prediction of all subsamples is taken. This brings

distinct advancements to any deep learning architecture as the initial architecture inherits

advantages seen in ensemble machine learning algorithms. This includes the generation of

a much more generalized non-linear function with less overfitting on unseen data.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

28

2.5 Scaling the Generation of the Encompassing Data Representation
Architecture

Due to the extremely massive amounts of data that Framed handles through company

event logs, generation of the encompassing data representation architecture on a single

machine proved to be impossible. Thus alternative technologies were investigated in order

to address this issue. This section will cover the technologies used in order to allow the

generation of the data representation to be realized.

2.5.1 APACHE SPARK CLUSTER COMPUTING ENGINE

Cluster computing refers to the process of performing parallel data computations on a

cluster of computers. This is done through the use of a system that can defragment the

complexities of a single computation and assign fragments of the computation to be

performed on different computers in the cluster [33]. Thus the overall completion of the

main computation can be collected from each computer and combined as a single object.

This model was realized through the now extremely popular MapReduce [34] system. The

system provides a user with a programming model where he/she can pass data through a

set of operations in a created acyclic data flow graph. An example of a directed acyclic

graph (DAG) can be seen in Figure 2.13.

4

3 5

1

2

MapReduce

Operations

Dependencies

Figure 2.13 - Directed Acyclic Graph of operations to be applied so that
the overall computation can be completed

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

29

Therefore a complex computation can be thought of as a set of simple operations that have

to be completed in a specific order so that the result satisfies the result of the original

computation. The order of operations of the example in Figure 2.13 would be {5, 3, 1, 4, 2}.

Even though this data flow programming model can be applied to satisfy a lot of different

applications, applications that reuse intermediate results of the computation in a lot of

parallel operations, cannot be efficiently expressed through such a model [35]. An example

of such an application is an iterative application where each iteration is expressed as set of

operations to be performed. This inherently would mean that each iteration would invoke

data reloading from storage, which would significantly decrease computation performance.

Spark is a relatively new cluster computing framework that tackles this issue through its

novel abstracted programming model of the two stage MapReduce model [35]. This novel

programming model allows spark to support any arbitrary acyclic graph of operations. The

workflow of the model is shown in Figure 2.14 (from [36]).

Figure 2.14 - Spark application workflow across its components

Spark introduces the concept of resilient distributed datasets (RDDs) [37] which are a

representation of the effect of certain operations/transformations on data in storage or in

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

30

other RDDs. This means that Spark applications can be written in a sequential format

through a chain of RDDs which is a much more intuitive way for a programmer to describe

the flow of data operations and in effect, be able to reuse previous RDDs in iterative

computations. As RDDs can be cached to memory, reusing a single RDD (stored in memory)

for iterative operations allows Spark to be 100x faster than Hadoop MapReduce.

Furthermore these transformations are applied “lazily” such that they can be stacked in a

sequence without any computation occurring in the background. Essentially through a

stack of transformations, a directed acyclic graph is generated in the background.

Only the application of an “action” such as 𝑟𝑒𝑑𝑢𝑐𝑒 or 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 will trigger the initialization of

a computation. After a computation is initialized, the graph is passed to the DAGScheduler

where the graph is split into stages of tasks. These stages are comprised of a set of

optimized operations to be performed on the data. This optimization ability of the

DAGScheduler is what grants Spark the ability to be 10x faster than Hadoop MapReduce on

disk operations. For example, multiple 𝑚𝑎𝑝 transformations can be scheduled within a

single stage.

Once all stages are optimized, they are flagged as ready and subsequently passed to the

TaskScheduler which initiates tasks via the employed cluster manager which could be

simply Spark Standalone or even Yarn or Mesos. Each task in a stage is executed by a

worker in the cluster and its computation results (blocks) are stored in a workers’ memory,

which in turn can be returned for computations on subsequent stages. This can be seen in

Figure 2.15 which depicts how computations are assigned and results retrieved from a

cluster of three workers (from [37]).

Figure 2.15 - Example of Spark runtime on three workers

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

31

It has to be mentioned that the TaskScheduler is not aware of any stage dependencies. Thus

stages to be computed that have dependencies on previous completed stages, whose task

results have been discarded from memory, are recomputed [35]. This allows Spark

applications to be resilient to faults but comes as a cost of reduced performance if there

isn’t enough cluster memory to store all task results.

2.5.2 HADOOP DISTRIBUTED FILE SYSTEM

In order for all of Spark workers to have access to the data so that they can perform their

individual tasks, the data needs to be distributed. Furthermore workers need to have

access to data that might be stored on different workers. This can be achieved through the

implementation of a distributed file system such as the Hadoop Distributed File System

(HDFS) [38].

HDFS allows for highly scalable distributed storage of data and it is the basis for all Hadoop

applications. It is able to do this by separating file system metadata and application data

into NameNode and DataNode servers respectively. File system metadata take the form of

𝑖𝑛𝑜𝑑𝑒 objects which contain file and directory information such as permissions,

modification times and access times. File content is split into blocks which are large size

chunks of a files data. The blocks are subsequently distributed and reproduced in a number

of DataNode servers (most commonly three). This can be seen in Figure 2.16 which depicts

an HDFS architecture with client interactions.

Figure 2.16 - HDFS Architecture with client interactions

NameNode

1

DataNode DataNode DataNode DataNode

3

2 2

1

2

3

3 1

Blocks

Replication

File

Metadata Client

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

32

The diagram above assumes that file data can be held in single blocks (block numbering).

This was done in the hopes of demonstrating the effect of block replication. In reality a

single data file will be split into multiple blocks depending on the chunk size selected and

the size of the actual data file.

Furthermore the figure demonstrates how a client interacts with the HDFS architecture.

Regardless of whether the client wishes to write or read data, client interactions are

initiated on the NameNode server where file metadata and namespace tree information are

held. If a client wants to read particular file’s data, the NameNode server is contacted and

the locations of the blocks regarding that particular file are returned by the NameNode.

Subsequently the client then reads the block data directly from the DataNodes that the

blocks are stored in. Similarly if a client wants to write data to the HDFS, the NameNode is

contacted with a request of nominating three suitable DataNodes where file data blocks can

be stored and replicated. After the NameNode returns this information from its namespace

tree, the client then proceeds to writing and replicating the blocks directly on the three

DataNode servers in a sequential fashion.

In order to keep the overall system integrity, DataNodes send ℎ𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠 to the NameNode

which contain information about a DataNodes’ status and the blocks hosted on that

DataNode. This is usually done every three seconds and a DataNode failing to do so for ten

minutes will be regarded as out of service by the NameNode. This in turn will initiate block

replications of the blocks contained in the faulty DataNode on other “alive” DataNodes.

Additionally heartbeats play an important role in order for a NameNode to perform

efficient space allocation tasks and load balancing decisions. These actions are performed

as response to heartbeats as a NameNode will not directly contact a DataNode. Thus it is

critical that heartbeats from DataNodes to a NameNode are performed as frequently as

possible.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

33

3. METHODOLOGY

This section will cover the steps undertaken in implementing the previously described

objectives. It will describe the reasoning behind the proposed data representation

architecture as well as how it was realized through the use of a Spark computation cluster.

Furthermore this section will cover the development progression of the proposed deep

neural network through the addition of the more advanced deep learning mechanics

described in the background research section.

3.1 Encompassing Data Representation Architecture

Each company that Framed deals with, tracks system events and is able to log them as JSON

objects. Consequently daily event logs are supplied to Framed as “raw-dumps”, which are

made up of these JSON objects, such that each JSON object is separated by a new line. An

example of the general structure of a JSON object can be seen in Figure 3.1.

As can be seen in the example, the “event” key in the JSON object exists in every event

logged and is independent of company type. In other words, any event from any company,

will always contain this initial key in their JSON event objects. Even though the “properties”

key also exists in all JSON event object regardless of company, the value (object) of the

{“event”: “Event Type Name”,

“properties”: { “distinct_id”: “User ID (Anonymous/Registered)”,

 “time”: Numerical UNIX Timestamp,

 … other company dependent properties

 }

}

Figure 3.1 - Example of an event JSON object

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

34

“properties” key changes for different types of events and also different companies will

have different property value objects which depend on their system.

Since the data representation to be developed is concerned with user event data only, a key

in the “properties” value object needed to be identified that would indicate this. This was

identified to be the “distinct_id” key. The “distinct_id” is only present in the “properties”

value object if the event logged was triggered by a user in the system. Furthermore the

value of this key is independent of whether the user is a registered user in the company or

a general/anonymous user. Having that said, there is a distinct difference between the

values of registered and general user. Registered users have numerical distinct ids, while

general users have long alphanumeric ids usually corresponding to system cookie ids.

Lastly the “time” key in the “properties” value object was found to exist in all JSON event

objects regardless of event type and company. The value of the “time” key contains a

numerical UNIX timestamp. All other keys in the “properties” value object were found to be

company and event type specific.

By having realized what information was available in user event data across different

companies, it was decided that the encompassing data representation architecture needed

to be formed from these persisting key-value pairs. Thus it was essential that the values of

the “event”, “distinct_id” and “time” keys were scrapped from the daily “raw-dump” files in a

reasonable data structure. The values from these keys were scrapped from JSON event

objects and stored in tuples of the form {𝑢𝑠𝑒𝑟 𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑒𝑣𝑒𝑛𝑡}. After collecting all the tuples

formed from each JSON event object, tuples containing user ids of non-registered users

needed to be removed from the collection. This was done by validating that the user id was

completely numerical, as it was known that non-registered users would have long

alphanumeric values.

Having gathered the selected values, the question at hand was how these values could be

structured in a way as to express differences between user behavioural patterns. Inspired

by the representation used to mine user development signals in online community

platforms [39], it was decided a user event vector needed to be generated for each user

across a specific timeframe. Figure 3.2 depicts the proposed structure of a users’ event

vector for a specific time frame.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

35

Figure 3.2 - Proposed user event vector structure for a specific user

In the context of churn prediction, user behavioural patterns need to analysed in order to

predict whether based on those patterns, the user will churn or not. Since Framed provides

results of this analysis on a monthly basis, the generated user event vectors needed to be

confined within a specific 𝑠𝑝𝑙𝑖𝑡 of the complete input data timeframe. The timeframe of a

split would be further subdivided into one hundred periods. The periods could intuitively

be thought of as percentage positions of a splits’ time interval. Based on those period time

intervals, user vectors could be generated for each user with one hundred dimensions.

Each dimension in the vector represents a count of events that occurred in a period of that

splits timeframe by a specific user. This is repeated for each customer so that after

collecting all the user vectors, the end result would be a matrix of 𝑁 × 100 where 𝑁

represents the number of users. The heat map in Figure 3.3 depicts such a matrix.

Figure 3.3 - Collection of user event vectors as a matrix

1 0 0 3 2 0 6 0 0 0

2

𝑝𝑒𝑟𝑖𝑜𝑑1

𝑝𝑒𝑟𝑖𝑜𝑑2

…

𝑝𝑒𝑟𝑖𝑜𝑑100

𝑡𝑖𝑚𝑒𝑆𝑝𝑙𝑖𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒𝑆𝑝𝑙𝑖𝑡𝑒𝑛𝑑

𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒
𝑒𝑣𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡

𝑠𝑝𝑙𝑖𝑡𝐿𝑒𝑛𝑔𝑡ℎ

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

36

Even though the proposed representation is using very simplistic features to form user

event vectors, intuitively this representation is able to capture the differences between

user behaviours as event counts are essentially compared on percentages of time across

users. As can be seen in the above figure, the generated user event vectors are sparse, but

by having the split length parametrized, the sparsity of the vectors can be adjusted, which

ultimately removes sparsity in the vector. Of course this is greatly dependent on the rate of

user events of a particular company. Event vectors, with adequate sparsity, can be

generated from a company with a very high rate of events, by using a small split length.

Similarly extending the split length can benefit user event vectors of a company with not a

lot of user activity. Thus it can be said that the split length parameter needs to be selected

through trial and error, so that denser user event vectors can be generated with more

pattern information.

Now that the proposed representation has been defined, the following step was to decide

how to label these representations. Through their experience, Framed has realized that

almost 81% of the companies they deal with have no event implemented to signify the

churning of a user [40]. Thus output values needed to be generated through some kind of

logic that would determine if a user has churned based on the given data. Using the logic

described in [39], a user would be deemed as a churner if there were no events triggered

for a specific number of consecutive days. Due to the inherent business model of

subscription companies to bill their customers on a monthly basis, it was decided that 30

days of inactivity would be a good threshold to signify user churn. This is because a whole

month of inactivity means a loss in revenue for these companies, therefore a churner would

have to be identified before they become inactive.

The concept of time splits used to generate the user event input vectors was also used to

implement this logic. Since data from a company was divided into splits of a selected split

length, data from subsequent splits could be used to determine the output value of a

previous splits’ user event vector. This logic can be better demonstrated through Figure 3.4

which shows the complete development of training and validation/test sets.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

37

Figure 3.4 - Generating Training and Validation/Test sets using split data to define output values

The above figure shows the overall logic of using the proposed representation architecture

to generate training, validation and test sets across 90 days’ worth of company data for a

set split length of 30 days (split length can be varied). Let 𝑠𝑝𝑙𝑖𝑡1, 𝑠𝑝𝑙𝑖𝑡2 and 𝑠𝑝𝑙𝑖𝑡3 indicate

consecutive 30 day splits. Initially 𝑠𝑝𝑙𝑖𝑡1 data is used to generate user event vectors for

each user present within the time interval of 𝑠𝑝𝑙𝑖𝑡1. Then the combined data from 𝑠𝑝𝑙𝑖𝑡1

and 𝑠𝑝𝑙𝑖𝑡2 is used to compute churn output values for every user in the combined time

interval of 𝑠𝑝𝑙𝑖𝑡1 and 𝑠𝑝𝑙𝑖𝑡2. The output values are calculated based on the time difference

between the time of a users’ last triggered event and the final time of 𝑠𝑝𝑙𝑖𝑡2. If this time

difference is greater than 30 days, then a 1 is returned as an output value (indicating

churn), otherwise a 0 is returned (indicating an active user). Furthermore, in the case that

a users’ overall event time span throughout 𝑠𝑝𝑙𝑖𝑡1 and 𝑠𝑝𝑙𝑖𝑡2 is found to be less than 30

days (which would indicate a new user), a -1 is returned. This is important as a company

would not be interested in keeping new users but rather retain long active users. Therefore

any users with a value of -1 are filtered out.

The user event vectors generated for 𝑠𝑝𝑙𝑖𝑡1 are joined with the generated output values

based on their user ids. This is done as we are only interested in the output values of users

in the time interval of 𝑠𝑝𝑙𝑖𝑡1 and thus any other users that have registered after 𝑠𝑝𝑙𝑖𝑡1 are

𝑠𝑝𝑙𝑖𝑡1 𝑠𝑝𝑙𝑖𝑡2

𝑠𝑝𝑙𝑖𝑡2 𝑠𝑝𝑙𝑖𝑡3

Combining data from 𝑠𝑝𝑙𝑖𝑡1 and 𝑠𝑝𝑙𝑖𝑡2

Combining data from 𝑠𝑝𝑙𝑖𝑡2 and 𝑠𝑝𝑙𝑖𝑡3

Calculated output values for 𝑠𝑝𝑙𝑖𝑡1 input vectors

Calculated output values for 𝑠𝑝𝑙𝑖𝑡2 input vectors

T
ra

in
in

g
 S

et

V
al

id
at

io
n
/T

es
t

S
et

User event input vectors

User event input vectors

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

38

not included. Therefore the end result will be a complete dataset for 𝑠𝑝𝑙𝑖𝑡1 with user event

input vectors and churn output values.

Since the overall aim of generating these representations is to effectively train deep neural

networks to predict churn rather than just identifying what input vectors indicate churn,

the deep neural network should be validated and tested on a following splits’ dataset. This

is also demonstrated in Figure 3.4, as the whole process of generating a dataset for 𝑠𝑝𝑙𝑖𝑡1 is

repeated for 𝑠𝑝𝑙𝑖𝑡2, using 𝑠𝑝𝑙𝑖𝑡3 to generate its output values. Therefore the final result will

be a dataset for 𝑠𝑝𝑙𝑖𝑡1 and a dataset for 𝑠𝑝𝑙𝑖𝑡2. The dataset generated for 𝑠𝑝𝑙𝑖𝑡1 would be

used to train a deep neural network while the dataset generated for 𝑠𝑝𝑙𝑖𝑡2 would be further

sub divided into validation and test sets (50% - 50% random split). Thus this ultimately

would force the deep neural network to find a function that could predict churn on 𝑠𝑝𝑙𝑖𝑡2

data representations based on 𝑠𝑝𝑙𝑖𝑡1 data representations. This is key in enforcing

prediction rather than just identification of data representations.

Due to the inherent nature of the problem of churn prediction, generated datasets will be

imbalanced in terms of samples available for their respective output value classes. This is

because customer churn will usually be a rare event. This can cause serious issues in

prediction performance [41], as a model will adjust its parameters to fit the majority class

while disregarding the minority class. In order to address this issue, generated training,

validation and test sets were balanced using random under-sampling. This method

randomly removes samples from the majority class until the samples of each class are

balanced. Naturally this may cause the loss of a considerable amount of majority samples

that can contribute to better separation between the two classes, but this was the only

identified technique that would not cause model overfitting.

3.2 Scaling Dataset Generation with Spark

Initially the generation of datasets was attempted using Python and various SciPy

ecosystem packages such as NumPy and Pandas. Even after boosting the performance of

certain iterations in the developed script by using multithreading Python techniques,

dataset generation based on the proposed data representation architecture, could not be

realized on a single machine. This was mainly due to the massive sizes of the raw-dump

daily JSON event files which in turn caused extremely long iteration times. Therefore other

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

39

technologies needed to be investigated that could generate these datasets as fast as

possible and irrespective of how many days of data were selected. It was decided that a

Spark computational cluster would be used as the literature stated that it could be up to

100x faster than a Hadoop MapReduce system (if there is enough system memory).

Framed graciously provided access to a Compute Engine project on the Google Cloud

Platform in order build the Spark cluster. Compute Engine projects allow a user to create

high performance virtual machines of various computational and memory specifications.

By initializing a number of such virtual machines and by consequently installing Spark and

Hadoop (HDFS) proprietary software on each one, they could be configured to work

together as a computational cluster.

Before any building of the cluster could commence, the general architecture of the cluster

needed to be considered. Since a Compute Engine project will only allow a maximum of 24

computational cores to be utilized across all virtual machines, it was decided that the Spark

driver (master) would be based on a virtual machine with 8 cores and 16 Spark workers

(slaves) will be based on single core virtual machines. This setup would allow for maximum

computational performance while also allowing for a very powerful master server to

perform any non-cluster data operations.

Furthermore it was decided that an HDFS architecture should be incorporated with Sparks’

architecture so that no additional virtual machines would need to be created. This was

done by having the master virtual machine be both a Spark driver and an HDFS NameNode.

Thus the remaining 16 slave virtual machines would also serve a dual purpose, as they

would be both a Spark worker and an HDFS DataNode. The final architecture can be

visualized in Figure 3.5.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

40

Figure 3.5 - Diagram of final Spark computational cluster architecture

Before any virtual machine instantiation, a virtual network needed to be created that

would allow all the machines to operate under the same IP range. Furthermore this was

important as the computational cluster needed special firewall entries to allow TCP, UDP

and ICMP protocols to be used for communication between them. Thus by creating a virtual

network these firewall rules could be applied internally within the Compute Engine

without any concerns for outside security threats that could arise by enabling them.

Therefore each virtual machine instance was created on this virtual network following the

specifications described in the architecture. It was important that all instances were

working on the same operating system so that software installations could be carried out

the same way across all machines. The chosen operating system was Ubuntu 14.04 LTS as it

was a stable release of the popular Linux distribution. After all the virtual machines were

instantiated, Java and the Java development kit were installed on the all the machines, as

both Spark and Hadoop HDFS require Java to operate.

Spark allows for the possibility to operate in Standalone mode. This means that it does not

require the installation of third party cluster managers (YARN or Mesos) in order for it to

function. This can be achieved by installing a compiled version of Spark on each machine.

Spark installations provide scripts that can be run in order to configure a cluster. A master

Spark Driver

HDFS NameNode

Spark Worker

HDFS DataNode

Spark Worker

HDFS DataNode

Slave VM 1 Slave VM 2

Spark Worker

HDFS DataNode

Slave VM 16

Master VM

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

41

server can be launched using the “start-master.sh” script and a slave server can be assigned

to a master server using the “start-slave.sh” script followed by the IP of the master server.

This process can be accelerated by adding the IPs of all slave servers to a “slaves” file in the

master servers’ configuration and consequently running the “start-all.sh” script on the

master server. In order for any of these scripts to work, password-less secure shell (SSH)

access needed to be established between a master server and all slave servers. This was

done by generating private and public SSH keys on the master server and by sequentially

transferring these SSH keys to all slave servers. This allowed two-way communication

between the master server and slave servers. Finally, after further configuration in the

master servers’ Spark configuration files regarding environment variables, Spark was

initialized using the “start-all.sh” script on the master server.

To extend the capacity of the proposed architecture, additional 500GB drives were

attached on each of the slave virtual machines. This was done using the Google Cloud SDK

which allows for quick access and control of all projects in the Google Cloud Platform with

simple shell commands. After attaching the drives to the slave virtual machines, the drives

were mounted on each slaves’ operating system in identical directories. The directories

would be used to hold the blocks of split data files within the HDFS.

Hadoop was installed on the master server using a pre-configured installation from

Sigmoid Analytics, and after careful and painstaking alterations in the master servers’

environment variables and configuration files, the master server was finally able to be

designated as the NameNode. In order to include the slave VMs as DataNodes, Sigmoids’

configuration was altered with the IPs and DataNode directories of each slave VM. The

directories that were assigned were “hadoop/hdfs/datanode” on the mounted drives of

each slave VM. Lastly the appropriate Hadoop configuration files were copied on each slave

VM (as well as other environment variable settings), so that the HDFS could be started

using the supplied “start-dfs.sh” script on the master server.

Having everything set up, the next stage was to tailor the proposed data representations

script so that it can utilize the Spark computational cluster. Essentially the script was re-

written using the PySpark API which exposes the Spark programming model to Python. In

other words RDD transformations could be executed through this API by supplying Python

functions to the transformation methods, which would subsequently return Python

collection types if a Spark “action” is executed on a transformation. Thus most of the scripts

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

42

logic was split into functions that could be easily passed into RDD transformations, by

following the respective transformation arguments and return prerequisites.

Figure 3.6 - Example of a function that can be passed through a map Spark transformation to gather the required
data from a “raw-dump” file loaded in an RDD

The example shown in Figure 3.6, depicts an algorithm that can be implemented in Python

and subsequently passed into a Spark 𝑚𝑎𝑝 transformation. After a “raw-dump” files’ data

has been loaded as text elements in an RDD, the “getSelectedData” function can be

performed through the 𝑚𝑎𝑝 transformation. This will return a new RDD where every text

element in the original RDD, has been transformed into a tuple of (𝑢𝑠𝑒𝑟 𝑖𝑑 , 𝑡𝑖𝑚𝑒, 𝑒𝑣𝑒𝑛𝑡).

This is in fact is the first step discussed in the encompassing data representations’

architecture, where required information was scrapped JSON event objects.

The above methodology was applied to all procedures required to generate datasets of the

discussed representation architecture. Intuitively a directed acyclic graph could be

visualized from the performed transformations which would give better context to the

overall way the Spark script works.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

43

Figure 3.7 - Complete directed acyclic graph of the transformations performed in Spark in order to retrieve
(Event Vector, Churn Output) mappings

Get Selected Data

“Raw-

Dump”

Filter Null

Load Data in RDD

Filter Anonymous Users Generate Split

Intervals

Get All Timestamps

Filter on Split 1

Reduce

By

User ID

Filter on Split 1 & 2 Filter on Split 2 Filter on Split 2 & 3

Reduce

By
User ID

Reduce

By
User ID

Reduce

By
User ID

Check if

Churned

Check if
Churned

Filter -1 Filter -1

Output (ID, Value) Output (ID, Value)

Map
Timestamps

to Period

Map

Timestamps

to Period

Vectorize

By Period

Vectorize

By Period

Join

on ID
Join

on ID

Return (Vector, Output) Array Return (Vector, Output) Array

= map transformation

= filter transformation

= reduce transformation

= join transformation

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

44

Figure 3.7, illustrates how all the procedures needed to retrieve Event Vector to Churn

Output mappings of the proposed data representation architecture, can be performed

through Spark transformations in a directed acyclic graph. Transformations are illustrated

as ovals and actions are illustrated as rectangles. The mapping for 𝑠𝑝𝑙𝑖𝑡 1 is consequently

used to generate the training set, while the mapping for 𝑠𝑝𝑙𝑖𝑡 2 will be further subdivided

to generate validation and test sets. Of course further procedures are performed in order to

generate the final dataset from the two resulting mappings (like dataset balancing), but due

to the fact that most of the processing is performed on the Spark cluster the complete

process is extremely fast.

3.3 Implementing an Appropriate Deep Learning Architecture

Implementing a deep network architecture can be impossible if attempted to be done

without a way of expressing and computing mathematical expressions programmatically.

Furthermore the programming language needs to be extremely fast in its computations as

during the training phase of a neural network, a lot of different computations need to be

performed (cost function calculations, gradient estimations etc.). Theano has long been

recognised as an effective Python library in implementing deep neural networks, especially

in research [42]. It allows the definition, optimization and evaluation of mathematical

expressions of arbitrary complexity. Once a mathematical function has be expressed and

evaluation is initiated, Theano will compile the function into C code and automatically

optimize the generated C code so that when it is evaluated, the computation is extremely

fast. Furthermore Theano allows for GPU acceleration for its computations using the NVidia

CUDA API. The advantage that ultimately led to the adoption of Theano in this project, was

that the library can automatically perform differentiation on a function. This simplified the

backpropagation algorithm greatly.

Theano uses special objects in order to effectively express any function. The most basic

object is the Tensor object which essentially is a representation of the type of an expected

input. For example let’s assume that the function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 needed to be expressed in

Theano.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

45

As can be seen from the sample code in Figure 3.8, 𝑥 and 𝑦 are defined as Tensor objects of

type scalar. In other words 𝑥 and 𝑦 are expected to have integers as inputs. Subsequently 𝑧

is defined as the operation to be performed on 𝑥 and 𝑦. Finally the complete function is

expressed as having 𝑥 and 𝑦 as inputs and 𝑧 as the expected operation to be performed.

Thus any function can be easily expressed by a combination of input Tensors and a single

expression of the expected operation.

In order to better understand how Theano can be used to implement deep neural

networks, several deep learning tutorials from the University of Montreal were

implemented as practice (found here [43]). These included logistic regression using a

single artificial neuron up to the implementation of a Multilayer Perceptron (deep feed-

forward architecture). The tutorials covered how Theano could be used to implement

layers in a deep feed-forward network and how these layer objects could be easily stacked

and trained using stochastic gradient descent on the popular MNIST dataset [44]. Having

realised the basic concepts of how various deep neural network mechanics could be

implemented, it was decided that the deep learning architecture to be implemented would

be based on the tutorial examples.

Since the only paper describing the application of deep learning in churn prediction, had

proposed a deep feed-forward architecture, it was decided that such an architecture should

be adopted. As mentioned in the paper, hyperbolic tangent activation neurons were used in

their architecture. Having that said, background research suggested that the recently

developed rectified linear activation neuron could allow for better backpropagation

gradient estimations. Furthermore background research suggested the use of Dropout

could allow for better generalization in deep architectures. Thus it was decided that both

these mechanics would have to be implemented so that the final architecture could benefit

from these techniques.

x = Tensor.dscalar(‘x’)

y = Tensor.dscalar(‘y’)

z = x + y

f = function([x, y], z)

Figure 3.8 - Example of how f(x, y) = x+y can be expressed using Theano

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

46

Figure 3.9 - UML Class diagram of the proposed architecture with 4 layers

After following the Theano tutorials, it was decided that four different classes needed to be

created. The classes are depicted in the UML class diagram in Figure 3.9.

The most basic class is the LinearHiddenLayer, its main function is to generate the basic

structure of a layer in an architecture using the “n_in” and “n_out” (neurons in, neurons

out) arguments to generate an array of shape 𝑁𝑖𝑛 × 𝑁𝑜𝑢𝑡 and then assign the array values to

a “Theano.shared” variable. Shared variables allow information to be copied onto the GPU

and provide access to their contents to all Theano functions, so that information is not

constantly copied on the GPU in order to perform computations (severe decrease in

performance). The array is randomly instantiated based on a random uniform distribution

and essentially represents the weight values of a layer. The bias vector is instantiated in a

similar way but instead, it is instantiated with zeros. Lastly the output parameter is

expressed as the dot product between the input argument and the weights plus the bias.

The LinearHiddenLayer class is extended into the ReLuDropoutLayer class whose basic

function is to apply the rectified linear activation on the output parameter of the

LinearHiddenLayer subclass. The output of the ReLuDropoutLayer class is expressed as a

dropout function applied on the now activated layer (dropout function is discussed later

on).

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

47

In addition to the dropout hidden layers, the output layer of the architecture required a

softmax layer as its output in order to be able to act as a classifier. A SoftmaxLayer class

was implemented to serve this purpose. Its Weights and bias parameters are instantiated

with zeros and similar to the LinearHiddenLayer class are assigned to shared variables. The

parameter “probability_of_class_given_input” parameter is expressed through a

“Theano.softmax” function which takes the dot product of its weights and its input and

during computation will return the probability of an input belonging to a certain class. In

order for the architecture to be able to make predictions, the “predict_y” parameter is

instantiated as an expression through the use of the “Theano.argmax” function which

during computation will return the index of the neuron which has the highest probability.

Finally the SoftmaxLayer class has two methods. The negative_log_likelihood returns an

expression of the architectures cost function based on the classes’ parameters and a given

label vector y. The errors method returns an expression to compute the zero-one-loss of

the layers prediction against a given label vector y.

This is all brought together under the DropoutMLP class. The class example in Figure 3.9

demonstrates a DropoutMLP class of 4 layers. The main function of the DropoutMLP is to

stack ReLuDropoutLayer classes and at the end apply a SoftmaxLayer. The first hidden

layer takes as input the input vectors from the data representation architecture.

Subsequently the second hidden layer takes the first hidden layers’ output as input and

finally the output layer takes as input the second hidden layers’ output. It has to be noticed

that the size of the hidden layers is intuitively assigned as a parameter by controlling the

dimensions of each layers weight matrices. Since dropout is used in this architecture, L1

and L2 regularizations are applied only in the output layer and the values are respectfully

computed as separate parameters (Figure 3.9). Finally the DropoutMLP class takes the

output layers negative log likelihood method and assigns the expression as the cost

parameter. Similarly the errors parameter takes the output layers error method

expression.

The DropoutMLP object can now be effectively be trained by creating Theano functions

that can train, validate and test the objects architecture using its public parameters in a

backpropagation algorithm. The implemented backpropagation algorithm was essentially

an altered stochastic gradient descent algorithm from the tutorial with an added

momentum technique. Having that said, the Theano tutorials did not show how the dropout

technique could be implemented or how the activation function for rectified linear neurons

could be implemented. Furthermore the tutorials only demonstrated stochastic gradient

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

48

descent without a momentum parameter. Thus these techniques needed to be

implemented through an understanding of the research paper descriptions of each

technique.

The rectified linear unit activation was implemented by expressing a function in Theano

that could be applied on a layers pre-activation matrix (the dot product of the weight

matrix and the input values) such that only the maximum of a Theano Tensor object would

be returned. To implement dropout, a function was created that would allow only a

proportion of the activations of a layer to be passed on. The function can do this by

generating an array of a randomized binomial distribution of 1 trial, of the same size of a

layers activation matrix. The result of the binomial distribution is controlled by a

parameter 𝑝 which corresponds to the probability of a neuron not dropping out (indicated

by a 1 in the array). Thus the end result would be an array of ones and zeros of the exact

same size as the activation matrix. By multiplying the array with the activation matrix,

effectively only the results where a one is present will be returned. This function could be

applied in any layers activation matrix and could demonstrate dropout. Having that said,

dropout needs to be only applied during the training phase of a deep architecture. Simply

adding this function to a layers class would not work as dropout will be constantly

performed. Therefore a modification needed to be made in a dropout layers class such that

dropout is only performed during training. This was done by using the Theano

“Tensor.switch” method which returns a variable depending on a conditions validity. By

having the condition being “is_training” (Boolean variable) and by having that condition

altered during the run time of the backpropagation algorithm, dropout could be switched

on and off based on what phase the deep learning architecture was performing.

In order to implement momentum the expression of the “updates” parameter of the Theano

train function needed to be altered. The “updates” parameter of the Theano train function

essentially supplies the train function with an expression based on the weights of the

architecture, which describes how the weights will be updated. Thus every time the train

function is run, the weights of the architecture will be updated based on the result of the

train function (cost) and the update expression supplied. Momentum can be incorporated

in the update expression by firstly creating a Theano shared variable which essentially

keeps track of each weight update across every iteration. Then the update expression was

altered by incorporating a momentum parameter and having that parameter multiplied

with the previous weight updates. This was subsequently added to the normal weight

update expression where the learning rate is multiplied with the derivatives of the cost

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

49

function with respect to each weight. As mentioned previously gradient derivation can be

done automatically in Theano using the “Tensor.grad” method by supplying it with the cost

function and the weights. Furthermore during the end of every iteration the momentum

parameter would need to be increased and kept under one while the learning rate would

need to be decayed, so that correct gradient descent can be performed. This was done by

instantiating two more Theano shared variables with the initial momentum and learning

rate values. Therefore at the end of every iteration these shared variables were updated

with their respective updated values. Momentum was increased by 2% after every iteration

until it reached 0.99, while the learning rate was decayed by 1.5% after every iteration.

This is known as learning rate annealing in gradient descent algorithms with momentum,

and it is said to guarantee convergence to a minimum [45].

Therefore the final implemented architecture is a deep feed-forward neural network with

rectified linear activations in its hidden layers. Furthermore the architecture has a softmax

implementation as its output layer composed of two neurons (one for each class). This

layer is regularized using L1 and L2 regularization. The architecture also has a dropout

technique implemented during its training which should allow for better generalization.

Lastly the architecture is trained using an implementation of stochastic gradient descent

with momentum and an early stopping technique to further fight against overfitting.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

50

4. EVALUATION & ANALYSIS

Before any evaluation could commence, data from different companies needed to be

gathered. Three companies were randomly selected and 390 days’ worth of “raw-dump”

event files were collected from each. It was necessary to take this much data as the

proposed architecture effectiveness needed to be tested across different months. Due to

confidentiality reasons, these companies will not be named and will be denoted

as 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 and 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3. Each company’s data was passed through the

proposed Spark data representation algorithm with the split length parameter assigned to

30 days. It was decided that the input vectors of each company should be based on 60 days

instead of just 30 (less sparsity in input vectors), therefore two splits were taken to build

the input vectors. The churn calculations that generate the churn output values were

performed on subsequent 30 days (1 split) and 60 days (2 splits). This effectively allowed

for different churn projection windows as companies had varying churn rates. A company

with a low churn rate would not be able to produce enough churn positive samples in a

small churn projection window. Generated datasets for projecting different company splits

were collected from the Spark cluster and were evaluated.

In order to effectively evaluate how well the proposed architecture performed, it was

compared against a simple feed forward architecture on all generated datasets. The simple

feed-forward architecture employed hyperbolic tangent activation neurons in its hidden

layers, without dropout implemented and without momentum implemented in its

backpropagation algorithm. This was done in order to evaluate the effects, if any of these

newly introduced techniques. Furthermore the number of layers for both architectures was

increased during tests from 4 to 6, to evaluate the effect of adding more hidden layers. Both

architectures had their learning rates incremented from 0.0001 to 0.01 across all datasets

in order to adjust for different error surfaces. Different datasets would have different error

surfaces and because learning rate plays such an important role in determining an optimal

minimum, it would not be wise to keep it constant for all datasets. The momentum

parameter in the proposed architecture was kept constant across all tests with an initial

value of 0.5 and was decayed at a constant rate. Finally the proposed architecture’s

performance was compared against Framed’s current Random Forest algorithm across the

same split intervals of the generated datasets.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

51

4.1 Evaluating the Effectiveness of Introduced Techniques

4.1.1 COMPANY 1

Through the first company’s data, it was possible to generate two sets of datasets with

different churn prediction window timeframes, as enough churn samples were generated

in both cases. Due to the fact that two splits (60 days) were used to generate the input

vectors, the first split that could be predicted was the third one. In total ten splits could be

predicted when the churn projection window was set to 30 days and nine splits when it

was set to 60 days.

Figure 4.1 - Prediction Error of the Simple Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟏 splits

The simple feed-forward architecture was tested across all generated datasets with varied

learning rates and number of layers. The results can be seen in the box plot depicted in

Figure 4.1. The length of each box can be expressed as the variance between prediction

errors in terms of learning rate and layer numbers. It can be seen that when comparing the

results between the two churn projection windows, the architecture performs much better

in 30 day churn prediction timeframes. As more information exists in the input vectors of

the larger prediction window, the results seem counterintuitive (more information should

lead to less sparse input vectors and therefore better results). This might be an indication

that too much information might “hide” the variances between the input vector positions

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

52

and thus ultimately produce less separable data. Furthermore, when comparing the

variance between the smaller churn prediction timeframe and the longer one, the results of

the smaller timeframe have a much larger variance between the boxes across splits, while

the longer one seems to be more stable. The lowest point of the box plot can be thought of

as the architecture setup with the best result. Thus it can be said that the simple

architecture was able to generate adequate prediction results on split 4, 6, 7 and 9 with its

best results being 70%, 68%, 68% and 69% accuracy respectively (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −

𝑒𝑟𝑟𝑜𝑟) × 100).

Figure 4.2 - Prediction Error of the Proposed Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟏 splits

The proposed feed-forward architecture was subsequently tested on the same datasets. It

was able to overall perform much better across all splits, with even some splits having

prediction errors lower than 0.3 (Figure 4.2). Therefore it can be said that the proposed

architectures activations could better decompose the variance between the feature vectors.

The most interesting result is how the variance between the 60 day churn prediction

window boxes has all but diminished. It could be said that this effect proves that the

architecture demonstrates better generalization when compared to the simple architecture

on the same splits. Even though the simple architecture performed better on split “8 & 9” it

could be that it was overfitting the hypothesis function as other 60 day splits performed

much poorly. Overall the introduced techniques in the proposed architecture seem to have

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

53

a beneficial effect on the prediction results as the architecture demonstrates better

generalization and much better accuracies across splits. Its best results where on splits 3, 7,

9, 10 with accuracies of 74%, 78%, 72% and 75% respectively

4.1.2 COMPANY 2

Similarly as with 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1, it was possible to generate enough churn samples for the two

different sized churn prediction windows.

Figure 4.3 - Prediction Error of the Simple Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟐 splits

Overall the results seem to be significantly worse when compared to the results obtained

by the simple architecture across 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 splits (Figure 4.3). The only reasonable

prediction results were obtained on spits 6 and 10 and even then, the results weren’t

particularly great with the best accuracies being 68% and 65% respectively. Variances

between the boxes of the smaller churn prediction window are extremely high, showing

that the architecture has difficulty generalizing across different months. Contrary to

𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 results it cannot be said that the difference in churn prediction windows had an

immediate effect on the results, as most of the smaller prediction window results have

similar results to the larger ones.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

54

Figure 4.4 - Prediction Error of the Proposed Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟐 splits

Testing the proposed architecture on 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 datasets produced similar results as the

simple architecture, with no significant increases in prediction accuracies across splits.

Having that said, Figure 4.4 demonstrates how effective the techniques employed in the

architecture are at creating more generalized hypothesis functions. Variances between the

smaller projection window results have significantly decreased and variances between the

larger projection window results have almost diminished. Although this does not explain

why predictions on all datasets for both the simple architecture and the proposed one are

so poor. This may be due to the proposed data representation, failing to capture any

significant differences in patterns between churners and non-churners (non-separable

data). Thus further investigation would have to be carried out to prove that this is the

cause and to subsequently understand what might be the reason (discussed in Section 4.4).

4.1.3 COMPANY 3

Data from 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 could not produce an adequate amount of churn samples for a single

split (30 day) churn prediction window. This was due to the low churn rate of the selected

company and therefore only datasets based on two split churn prediction windows were

generated.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

55

Figure 4.5 - Prediction Error of the Simple Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟑 splits

As can be seen in Figure 4.5, the results of the simple feed-forward architecture again show

high variances between splits, proving again that the architecture is not stable across

different months. Having said that, the results overall are extremely better than the

prediction results obtained in data from 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 and 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2. More than half of the

splits (at a specific architecture layer setup), produced accuracies higher than 70% and in

splits “4 & 5” and “11 & 12”, accuracies higher than 80% were attained.

Figure 4.6 - Prediction Error of the Proposed Feed-Forward Architecture across 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟑 splits

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

56

The results become even better when the proposed architecture is tested on the generated

datasets of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 (Figure 4.6). At specific number of layer setups the architecture

produces accuracies higher than 70% across all of the splits. Furthermore four splits

produced accuracies greater or equal to 80% which is a significantly better result when

compared to the results obtained from the simple feed-forward architecture. Most

importantly the variances between split results have decreased in comparison to the

variances in the simple architecture. Although it has to be noted that the individual

prediction results of splits “5 & 6” and “10 & 11” show extreme fluctuations (length of the

boxes). Further investigation (see Section 4.2.3) showed that these large variances were

caused by the learning rate parameter assignment rather than the number of layers of a

specific architectures’ setup. This of course demonstrates how important the learning rate

parameter is to avoiding falling into suboptimal local minima, even when momentum is

implemented in the gradient descent algorithm.

4.2 Evaluating the Effect of Adding More Layers

The results shown in the previous section were based on cumulative prediction

performances of architecture setups with varying number of layers and varying learning

rate assignments. In order to identify which of the two varying criterions played a more

significant role on the prediction performances and to evaluate if increasing the number of

layers produced an effect on prediction performance, the following plots were generated.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

57

4.2.1 COMPANY 1

Figure 4.7 - Comparison of Learning Rate vs Number of Layers: Prediction Errors across all splits of 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟏

The plot in Figure 4.7 depicts the effects the learning rate and the number of layers have in

terms of prediction accuracies across all splits of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 between each of the

architectures. The proposed architectures prediction errors are plotted in a red line and

the errors of the simple feed-forward architecture are plotted in blue. The plot is split in

sections with the learning rate varied from 0.0001 to 0.01 across the x-axis and the number

of layers varied from 4 to 6 down the y-axis. Immediately it can be seen that adding more

layers has little to no effect on the simple feed-forward architectures’ prediction results. On

the other hand an increase in layers in the proposed architecture seems to allow the

architecture to take advantage of the extra layers in order to generate more abstract

features. This is clearly seen in the plot depicting both architectures with 6 layers and

trained on the very small learning rate of 0.0001.

Viewing the figure from left to right will demonstrate the effect the learning rate has on

each architecture setup. While comparing the two architectures this way, it can be seen

that altering the learning rate has little to no effect on the employed stochastic gradient

descent algorithm in the simple architecture. The proposed architectures’ added

momentum parameter seems to be very dependent on what learning rate is chosen. From

the plot it can be concluded that the employed backpropagation algorithm with

momentum, overall seems to perform much better when small learning rates are used

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

58

(0.0001 and 0.001). Lastly if an optimal setup would have to be suggested for predicting

𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 data, it would have to be a six layer proposed architecture with 0.0001 learning

rate and 0.5 momentum as its hyper parameters. This is because it is the setup that

produced the best results across most of the months.

4.2.2 COMPANY 2

Figure 4.8 - Comparison of Learning Rate vs Number of Layers: Prediction Errors across all splits of 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟐

A similar plot was generated for 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 in Figure 4.8. Compared to the plot

of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1, the effects of both varying the learning rate and varying the number of layers

are negligible. The results are counter intuitive which further promotes the concept that

the problem with 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2’s results lie within the proposed representation architectures’

ability of effectively capturing the differences between churn and non-churn user event

patterns. Although if an optimal setup would have to be suggested, it would be a proposed

architecture of 6 layers trained using 0.0001 learning rate and 0.5 momentum as its hyper

parameters, as it produced the best results across most of the splits.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

59

4.2.3 COMPANY 3

Figure 4.9 - Comparison of Learning Rate vs Number of Layers: Prediction Errors across all splits of 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟑

As mentioned previously the boxplots generated for the proposed architecture in the

previous section for 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3, showed high variance between prediction results on splits

“5 & 6” and “10 & 11”. This effect was attributed to learning rate selection and this can

clearly be seen in the plot in Figure 4.9. Viewing the plot from left to right, in every

proposed architecture setup (number of layers) there seems to be a direct dependency on

the selected learning rate and the prediction results. The very low learning rate of 0.0001

produced consistently poor results across most of the splits. Furthermore the highest

learning rate seems to miss the minimum in most splits at the highest number of layer

configuration. This could mean that the error surfaces of most of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 splits are

riddled with a lot of local minima. Due to the early stopping mechanism employed, the

lowest learning rate could have never got the chance to reach a minimum. The largest

learning rate could have consistently missed the minimum due to its large step size on the

higher dimensional error space caused by the larger amount of layers. Furthermore

considering the increase in layer numbers, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3’s data seems to not benefit

substantially from a larger amount layers, as was noticed with 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1. This might be

due to the fact that the minimum number of layers was sufficient to defragment the

complexities within the input vectors. Overall if an optimal architecture configuration

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

60

would have to be suggested for predicting 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 splits, it would have to be a proposed

architecture of 4 layers trained using 0.001 learning rate and 0.5 momentum as its hyper

parameters.

4.3 Evaluating the Overall Performance against Frameds’ Model

Even though the proposed representation architecture and the proposed deep learning

architecture have shown promise in their applications, it is essential to see how well they

perform against Frameds’ current Random Forest model. As mentioned in the objectives

section, beating Framed’s model is not a requirement due to the fact that the general aim of

the project is to demonstrate how the feature engineering step could be skipped. Having

that said, if the proposed pipeline performs significantly worse than the Random Forests

model, even if the feature engineering step is skipped, Framed would not look into

integrating it in their pipeline.

The metric that was used to keep the comparisons between the two models as fair as

possible, was the zero-one-loss metric. This is the same metric that the prediction results of

the proposed deep architecture were based on. Furthermore it also has to be mentioned

that Framed’s model is an implementation of Balanced Random Forests which means that

it does not require any balancing in its datasets in order to correctly classify between

classes of an imbalanced dataset. Thus Frameds’ model would essentially have more

samples to work with than the proposed deep architecture, as dataset balancing is

performed using random under-sampling. Lastly Frameds’ model would be compared to

the “optimal” deep learning architecture configurations for each company (discussed

previously).

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

61

Figure 4.10 – Prediction accuracy comparison between employed model at Framed (red) and proposed model
(blue) across all companies.

The plot shown in Figure 4.10, shows the prediction results of both Frameds’ model and

the best performing proposed deep learning architecture configuration across all splits of

each company. The Random Forests model prediction accuracies are depicted in red and

the proposed deep architecture is depicted in blue. The prediction results are overlaid so

that their differences can be clearly seen over each split.

In 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1’s prediction results it can be clearly seen that the proposed deep learning

pipeline outperforms the Random Forests algorithm over almost every split (except three).

Furthermore in some of the splits the proposed deep learning pipeline exceeds the Random

Forests’ performance with an increase of almost 15%, which is a remarkable increase in

predictive performance. Framed’s Random Forests algorithm outperforms the proposed

architecture substantially on split 8. The reason behind this was identified to be that the

particular splits’ dataset only had 22 samples in its validation set. This was caused by an

exceedingly low number of churners during the splits timeframe, thus when the dataset

was randomly under sampled for balancing, most of the splits samples were removed.

Therefore the proposed deep architecture was not able to correctly train its weights on

such a small validation set.

Contrary to what was observed in 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1
′ 𝑠 predictions, the prediction results for

𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 showed the proposed deep learning pipeline was not consistently beating the

performance of the Random Forests model. Interestingly almost all the splits that the

Random Forests model was able to beat the proposed deep architecture, were splits of 60

day churn prediction windows. This could be caused by the way the input vectors of the

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

62

proposed data representation could “lose” variance between each vector position such that

discriminatory patterns are lost.

The most promising results for the proposed deep learning pipeline, are the result

comparisons on 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3. Throughout all the splits, the deep learning pipeline

outperforms the Random Forests model by an exceptional average prediction accuracy

difference of 20%. Furthermore, considering the fact that the deep learning architecture

was trained on datasets with no manual feature engineering, the results of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3

overall show great potential of an adoption of a deep learning pipeline at Framed could

significantly increase prediction performance and while excluding the feature engineering

stage.

4.4 Examining the reason behind Company 2’s poor performance

The prediction results of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 demonstrated consistent poor performance across

almost all of its splits when compared to 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 and 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 results. It was

previously mentioned that the suspected reason behind this was that the proposed data

representation architecture could not effectively capture the differences between user

event vectors. In order to test this theory, training set samples were taken from each

company and passed through a nonlinear dimensionality reduction technique known as t-

distributed stochastic neighbour embedding (t-SNE) [46], in order to determine if the data

of each company was able to separated. The technique has been extensively used to

visualize the structure of high dimensional datasets.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

63

Figure 4.11 - t-SNE Visualizations of company train datasets. Top Left 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟏, Top Right: 𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟐, Bottom:

𝒄𝒐𝒎𝒑𝒂𝒏𝒚𝟑

Examples of the dimensionality reduction results on different datasets, can be seen in

Figure 4.11. The results are based on training sets from each company that had the largest

amount of samples. Immediately, it can be noticed that 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3 training data is easily

separable which in turn would explain the remarkable prediction results. When looking at

the data separation of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1, a slight separation can be seen on the left hand side of the

plot. Even though the separation is not clear, through the training of the proposed deep

learning architecture more abstract features were created such that the architecture was

able to separate the data much better. This would explain why the performance of

𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 data seemed to perform better with the maximum amount of layers in the

proposed architecture. Unfortunately the results of the dimensionality reduction on

𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 proved that the data has no apparent separation between its classes, which

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

64

confirms the initial theory that the data representation was not able to capture pattern

differences between the classes. This also explains why the best performance across the

splits was found to be through the use of the 6 layer proposed architecture, as more layers

would increase the performance if adequate abstract features are created during training.

Framed was approached with the evaluation results and they subsequently suggested that

the only difference between 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 and the other two companies was that it was not a

subscription based company. In other words its registered users would not be paying on a

monthly basis for a particular service. This was interesting information, as a non-

subscription company would generally not have continuous customer event triggers, as

customers would not feel the need to use the service frequently as they are not paying for

it. Furthermore due to the logic behind the proposed data representation in measuring

even counts differences over time, this would explain why it was not effective at capturing

differences between churners and non-churners.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

65

5. DISCUSSION

The project investigated the hypothesis that an abstract, company independent data

representation could be developed and used to train deep learning architecture in the

problem of churn prediction. Through a deep learning architectures’ inherent ability of

creating more abstract features though it’s hidden layers it was hoped that the data

representation could provide adequate prediction results.

Looking back at the results of the evaluation and analysis section, the results show the

great potential of the overall proposed deep learning pipeline to pose as a solution to the

stated hypothesis. The proposed data representation architecture is able to capture

customer event patterns through the use of very abstract information that should be

available in any company data that logs user events. Furthermore the data representation

architecture applies company independent logic to ascertain whether a user has churned

based on a user’s inactivity. This was proved by visualizing the generated representations

through the nonlinear dimensionality reduction technique t-SNE on 𝑐𝑜𝑚𝑝𝑎𝑛𝑦3

and 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1.

Results revealed that the developed representation does not work well on non-

subscription based companies. The developed data representation was designed with the

assumption that once a user becomes inactive for 30 consecutive days, he becomes a

churner. In subscription based companies this works particularly well as users of a service

will feel less inclined to pay for a service if they are not using it, which in turn causes them

to churn. This effect is demonstrated through the t-SNE visualization of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦2 where

the data representation could not capture the differences between churners and non-

churners. Thus the key mistake was to assume that all of Frameds customers were

subscription based.

Even with this set back, the proposed deep feed-forward architecture performed

exceptionally well even on data representations where the data wasn’t particularly

separable. This has been demonstrated by the prediction results of 𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 whose t-SNE

visualization showed a very mild separation between classes. The proposed architecture

was able to generate more abstract data features across its hidden layers which in turn

allowed the architecture to better distinguish the differences between churner and non-

churner input vectors. Furthermore this effect was shown to get better as the layer

numbers were increased.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

66

In addition to its ability of generating abstract features, the proposed deep architecture

employed techniques that allowed it to generalize its hypothesis functions better across

different splits. This was established by comparing it against a simple feed-forward

architecture with hyperbolic tangent activations and no generalization techniques apart

from L1 and L2 regularizations. Through the use of dropout the proposed architecture was

able to inherit ensemble classifier traits that allowed it to produce less varied results across

its months. Furthermore by employing rectified linear activations and momentum in its

backpropagation algorithm, the proposed architecture demonstrated much better

prediction accuracies than the simple feed-forward architecture.

Lastly the complete proposed pipeline (data representation architecture and deep feed-

forward architecture), overall produced better prediction results than the currently

employed machine learning algorithm at Framed. This was shown by comparing both

models by the same metric and on the same split timeframes. Having that said, the

employed dataset balancing technique proved to produce problems on splits with low

churn samples. This in effect caused the proposed deep architecture to significantly

underperform against Framed’s Random Forest algorithm. Therefore it can be said that the

proposed pipeline is vulnerable on months with low churn rates.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

67

6. CONCLUSION

Taking everything into account it can be said that the general aim of the project has been

achieved. The project investigated and developed a representation architecture that could

be applied to an arbitrary company that is able to log user events. Furthermore through

prediction results it has been proved that it is effective at reducing the dimensionality of

incoming data while being able capture a pattern representations of the underlying data

features. Even if its effectiveness depends on what business model a company employs

(subscription based etc.) the overall prediction results showed that through a deep

learning architecture, the data representation does not underperform when compared to

the currently employed feature engineering methods at Framed. In retrospect further

companies should have been tested in order to better understand its effectiveness.

Furthermore through the development of the representation architecture, a cluster

computing technology was implemented so that the generation of the proposed data

representations could be realised. This took up a considerable amount of time away from

exploring the data representation architecture further and other deep learning

architectures. Having that said, the development of these technologies made learning and

understanding of these technologies possible. Moreover the utilization of these

technologies have allowed Framed to realize their potential and have expressed an interest

in their adoption. As this was a research project for Framed, the development of these

technologies can be thought of as an extension to the overall research performed.

The project also investigated and implemented an appropriate deep learning architecture

that can demonstrate unsupervised feature learning and can be applied in the problem of

churn prediction. In addition to the above objectives, the project incorporated modern

deep learning concepts which greatly benefited the overall performance of the model.

Being newly introduced to deep learning, in depth research and comprehension of the

underlying mechanics needed to be covered before any implementation could be

performed. Initially further architecture types were planned to be investigated (Recurrent

Neural Networks, Deep Belief Networks etc.), but due to the time constraints and the

background understanding that needed to be covered, this proved to be unrealistic. The

addition of an unsupervised generative pre-process architecture, like Deep Belief

Networks, behind the proposed architecture, might have greatly improved the prediction

results. Furthermore Recurrent Neural Networks are excellent in generating predictions

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

68

based on temporal data, which is exactly what churn prediction is. Thus both of these

architectures could be investigated further in future work.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

69

REFERENCES

[1] J. Hadden, A. Tiwari, R. Roy and D. Ruta, “Computer Assisted Customer Churn

Management: State-of-the-art and Future Trends,” Computers & Operations Research,

vol. 34, no. 10, pp. 2902-2917, 2007.

[2] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[3] Y. Bengio, “Deep Learning of Representations: Looking Forward,” in Statistical

Language and Speech Processing, Berlin, Springer, 2013.

[4] Y. Bengio, A. Courville and P. Vincent, “Representation Learning: A Review and New

Percpectives,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 35,

no. 08, pp. 1798-1828, 2013.

[5] I. Arel, C. D. Rose and P. T. Karnowski, “Deep Machine Learning - A New Frontier in

Artificial Intelligence Research,” IEEE Computational Intelligence Magazine, pp. 13-18,

2010.

[6] F. Castanedo, G. Valverde, J. Zaratiegui and A. Vazquez, “Using Deep Learning to

Predict Customer Churn in a Mobile Telecommunication Network,” Wise Athena LLC,

2014. [Online]. Available: http://wiseathena.com/pdf/wa_dl.pdf. [Accessed 01 05

2015].

[7] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine

Learning, vol. 2, no. 1, pp. 1-127, 2009.

[8] Q. Le and M. V. C. U. Google Inc., “Building high-level features using large scale

unsupervised learning,” in IEEE International Conference on Acoustics, Speech and

Signal Processing, Vancouver, 2013.

[9] L. Deng, R. W. U. Microsoft Res., G. Hinton and B. Kingsbury, “New types of deep

neural network learning for speech recognition and related applications: an

overview,” in IEEE International Conference on Acoustics, Speech and Signal

Processing, Vancouver, 2013.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

70

[10] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” in Foundations and

Trends in Signal Processing, Now Publishers, 2014, pp. 197-387.

[11] M.-K. Kim, M.-C. Park and D.-H. Jeong, “The effects of customer satisfaction and

switching barrier on customer loyalty in Korean mobile telecommunications,”

Telecommunications Policy: Growth in mobile communications, vol. 28, no. 2, pp. 145-

169, 2004.

[12] H.-S. Kim and C.-H. Yoon, “Determinants of subscriber churn and customer loyalty in

the Korean mobile telephony market,” Telecommunications Policy, vol. 28, no. 9-10,

pp. 751-765, 2004.

[13] B. Boser, I. Guyon and V. Vapnik, “A training algorithm for optimal margin classifiers,”

in Fifth Annual Workshop on Computational Learning Theory, New York, 1992.

[14] I. Guyon, B. Boser and V. Vapnik, “Automatic Capacity Tuning of Very Large VC-

dimension Classifiers,” in Advances in Neural Information Processing Systems, Morgan

Kaufmann, 1993, pp. 147-155.

[15] K. Coussement and D. Van den Poel, “Churn prediction in subscription services: An

application of support vector machines while comparing two parameter-selection

techniques,” Expert Systems with Applications, vol. 34, no. 1, pp. 313-327, 2008.

[16] K. Muata and O. Bryson, “Evaluation of decision trees: a multi-criteria approach,”

Computers & Operations Research, vol. 31, no. 11, pp. 1933-1945, 2004.

[17] T. Mitchell, “Decision Tree Learning,” in Machine Learning, McGraw Hill, 1997, p. 53.

[18] J. Bloemer, T. Brijs, K. Vanhoof and G. Swinnen, “Comparing complete and partial

classification for identifying customers at risk,” International Journal of Research in

Marketing, vol. 20, no. 2, pp. 117-131, 2003.

[19] V. Y. Kulkarni and P. K. Sinha, “Random Forest Classifiers: A Survey and Future

Research Directions,” International Journal of Advanced Computing, vol. 36, no. 1, pp.

1144-1153, 2013.

[20] Y. Xie, X. Li, E. Ngai and W. Ying, “Customer churn prediction using improved balanced

random forests,” Expert Systems with Applications, vol. 36, no. 3, pp. 5445-5449, 2009.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

71

[21] L. Deng and R. Microsoft, “A Tutorial Survey of Architectures, Algorithms, and

Applications for Deep Learning,” ASIPA Transactions on Signal and Information

Processing, 2012.

[22] P. Cunningham, M. Cord and S. Delany, “Supervised Learning,” in Machine Learning

Techniques for Multimedia, Springer, 2008, pp. 21-49.

[23] A. Ng, J. Ngiam, C. Foo, C. Suen, A. Coates, A. Maas, A. Hannun, B. Huval, T. Wang and S.

Tandon, “Unsupervised Feature Learning Deep Learning Tutorial,” Stanford

University, 2015. [Online]. Available: http://ufldl.stanford.edu/tutorial/. [Accessed

25 8 2015].

[24] T. Kocak, “Sigmoid Functions and Their Usage in Artificial Neural Networks,”

University of Central Florida, Spring 2007. [Online]. Available:

https://excel.ucf.edu/classes/2007/Spring/appsII/Chapter1.pdf. [Accessed 25 8

2015].

[25] Y. LeCun, L. Bottou, G. Orr and K. R. Muller, “Efficient BackProp,” in Neural Networks:

Tricks of the Trade, Springer Berlin Heidelberg, 1998, pp. 9-50.

[26] X. Glorot, A. Bordes and Y. Bengio, “Deep sparse rectifier neural networks,” in

International Conference on Artificial Intelligence and Statistics, Florida, 2011.

[27] G. M.W and S. Dorling, “Artificial Neural Networks (the multilayer perceptron) - a

review of applications in the atmospheric sciences,” Atmospheric Environment, vol.

32, no. 14-15, pp. 2627-2636, 1998.

[28] N. Qian, “On the momentum term in gradient descent learning,” Neural Networks, vol.

12, no. 1, pp. 145-151, 1999.

[29] N. Buduma, “Data Science 101: Preventing Overfitting in Neural Networks,”

KDnuggets, 04 2015. [Online]. Available:

http://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html.

[Accessed 25 08 2015].

[30] A. Ng, “Feature selection, L1 vs L2 regularization and rotational invariance,” in 21st

International Conference on Machine Learning, New York, 2004.

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

72

[31] L. Prechelt, “Automatic early stopping using cross validation: quantifying the criteria,”

Neural Networks, vol. 11, no. 4, pp. 761-767, 1998.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine

Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[33] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li, L. Zhang, L.

Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J.

Pecero, D. Kliazovich and P. Bouvry, “An overview of energy efficiency techniques in

cluster computing,” Cluster Computing, vol. 16, no. 1, pp. 3-15, 2013.

[34] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, “Spark: Cluster

Computing with Working Sets,” in 2nd USENIX conference on Hot topics in cloud

computing, Berkeley, 2010.

[36] M. Zaharia, Writer, Introduction to Spark Internals. [Performance]. UC Berkeley, 2012.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker and I. Stoica, “Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing,” in 9th USENIX conference on Networked Systems

Design and Implementation, Berkeley, 2012.

[38] K. Shvachko, S. C. U. Yahoo!, H. Kuang, S. Radia and R. Chansler, “The Hadoop

Distributed File System,” in IEEE 26th Symposium on Mass Storage Systems and

Technologies, Incline Village, 2010.

[39] M. Rowe, “Mining User Development Signals for Online Community Churner,” ACM

Transactions on Embedded Computing Systems, vol. 5, no. 1, 2015.

[40] Framed, “7 Takeaways on Analytics and Churn: What we learned in Beta,” 2015.

[Online]. Available: http://blog.framed.io/7-takeaways-on-analytics-and-churn-

what-we-learned-in-beta/. [Accessed 30 8 2015].

Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company

Independent Feature Vectors

73

[41] J. Burez and D. Van den Poel, “Handling class imbalance in customer churn

prediction,” Expert Systems with Applications, vol. 36, pp. 4626-4636, 2009.

[42] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard,

D. Wade-Farley and Y. Bengio, “Theano: new features and speed improvements,” in

NIPS 2012 deep learning workshop, 2012.

[43] U. o. M. LISA lab, “Deep Learning Tutorial,” 31 08 2015. [Online]. Available:

http://deeplearning.net/tutorial/deeplearning.pdf. [Accessed 31 08 2015].

[44] Y. LeCun, C. Cortes and C. Burges, “The MNIST Database of handwrittern digits,”

[Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 31 08 2015].

[45] G. Orr, “Momentum and Learning Rate Adaptation,” Willamette University, [Online].

Available: http://www.willamette.edu/~gorr/classes/cs449/momrate.html.

[Accessed 31 08 2015].

[46] L. J. P. Van der Maaten and G. Hinton, “Visualizing High-Dimensional Data Using t-

SNE,” Journal of Machine Learning Research, vol. 9, no. 1, pp. 2579-2605, 2008.

